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Countable Borel equivalence relations

Definition

A countable Borel equivalence relation (CBER) on a standard
Borel space X is a Borel equivalence relation E ⊆ X2 such that
each E-class is countable.

Example

Any Borel action Γ ↷ X of a countable (discrete) group on a
standard Borel space induces its orbit equivalence relation EX

Γ ,
which is a CBER.
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Smooth and hyperfinite CBERs

Example (Smooth)

• Identity relation on a standard Borel space, say R or 2N.

• Z-coset equivalence on R: xER
Zy iff x− y ∈ Z.

Example (Hyperfinite)

E0 on 2N, where xE0y iff ∃n ∈ N, ∀m ≥ n : xm = ym.

This CBER is hyperfinite: E0 =
⋃

n Fn for an increasing
sequence F0 ⊆ F1 · · · of finite Borel equivalence relations:

xFny ↔ ∀m ≥ n : xm = ym.

Theorem (Slaman-Steel, Weiss)

Let E be a CBER on a standard Borel space X. TFAE:

1. E is hyperfinite. E =
⋃

n Fn where F0 ⊆ F1 ⊆ · · · are FBERs.

2. E is induced by a Borel Z-action. E = EX
Z for some Z ↷ X.
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Graphing of a CBER

Definition

A graphing of a CBER E on X is a Borel graph G ⊆ X2 whose
connectedness relation is E (xEy ↔ xG · · ·Gy for all x, y ∈ X).
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Treeing of a CBER

Definition

A treeing of a CBER E is an acyclic graphing, and a CBER E
is said to be treeable if it admits a treeing.



Treeable CBERs

Example

Free actions of a free group Fr ↷ X.

Theorem (JKL02)

Free actions of virtually-free groups are treeable.

Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a
quasi-tree is virtually-free, and hence treeable.

Question (Robin Tucker-Drob; 2015)

Is the class of treeable CBERs robust under quasi-isometries?
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Main result

Theorem (Chen, Poulin, Tao, Tserunyan; 2023+)

If a CBER E admits a locally-finite graphing such that each
component is a quasi-tree, then E is treeable.

Two metric spaces X,Y are quasi-isometric if they are isometric up to a bounded
multiplicative and additive error; X is a quasi-tree if it is quasi-isometric to a tree.
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Quasi-treeing Treeing

Quasi-tree Finitely-sep.
family of cuts

Median graph w/
finite hyperplanes

‘Canonical’
spanning tree

Dense family
of cuts
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Finitely-separating cuts

Definition

A cut in a connected locally-finite graph (X,G) is a connected
co-connected subset H ⊆ X with finite boundary.

Let H be a family of cuts such that if H ∈ H, then ¬H ∈ H.

Definition

Such a family H is finitely-separating if for each x, y ∈ X, there
are finitely-many H ∈ H with x ∈ H ̸∋ y.
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Orientations

Definition

An orientation on H is an upward-closed subset U ⊆ H
containing exactly one of H,¬H for every H ∈ H.

We’ll only consider the orientations that are based, in the sense
that each H ∈ U contains a minimal H0 ∈ U .
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The dual median graph

Definition

A median graph is a connected graph (X,G) such that for each
x, y, z ∈ X, the intersection [x, y] ∩ [x, z] ∩ [y, z] is a singleton,
called the median of x, y, z, and is denoted by ⟨x, y, z⟩.

Theorem (Sageev 95)

If H is finitely-separating, then the graph M(H):

• Vertices are based orientations on H;

• Neighbors of U are U △{H,¬H} for each minimal H ∈ U \{¬0};
is a median graph.
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Ends of graphs

Definition

The end compactification of a connected locally-finite (X,G) is
the Stone space X̂ of the Boolean algebra H∂<∞(X), whose
non-principal ultrafilters are the ends of (X,G).

Definition

A family H of cuts is dense towards ends of X if H contains a
neighborhood basis for every end in X̂.
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Density towards ends for quasi-trees

Lemma
The connected locally-finite graphs in which Hdiam(∂)≤R is dense
towards ends for some R < ∞ is invariant under quasi-isometry.

Corollary

If (X,G) is a locally-finite quasi-tree, then the family

H := Hdiam(∂)≤R(X) ∩Hconn(X)

of cuts is dense towards ends for some R < ∞.



Wrapping things up...

Quasi-treeing Treeing

Quasi-tree Finitely-sep.
family of cuts

Median graph w/
finite hyperplanes

‘Canonical’
spanning tree

Dense family
of cuts



The End

Thank you!


