Tree-like graphings of countable Borel equivalence relations An exposition to Tree-like graphings, wallings, and median graphings of equivalence relations by Ruiyuan Chen, Antoine Poulin, Ran Tao, and Anush Tserunyan

Zhaoshen Zhai

McGill University

October 1, 2024

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

Example

Any Borel action $\Gamma \curvearrowright X$ of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation* E_{Γ}^X , which is a CBER.

うして ふゆ く は く は く む く し く

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

Example

Any Borel action $\Gamma \curvearrowright X$ of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation* E_{Γ}^X , which is a CBER.



Example (Smooth)

• Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.

Example (Smooth)

• Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x - y \in \mathbb{Z}$.

Example (Smooth)

• Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x - y \in \mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \ge n : x_m = y_m$.

Example (Smooth)

- Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x y \in \mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \ge n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

Example (Smooth)

- Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x y \in \mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \ge n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

Example (Smooth)

- Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x y \in \mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \ge n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

Theorem (Slaman-Steel, Weiss)

Let E be a CBER on a standard Borel space X. TFAE:

1. *E* is hyperfinite. $E = \bigcup_n F_n$ where $F_0 \subseteq F_1 \subseteq \cdots$ are FBERs.

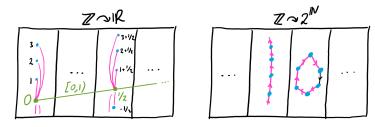
2. E is induced by a Borel Z-action. $E = E_{\mathbb{Z}}^X$ for some $\mathbb{Z} \curvearrowright X$.

Example (Smooth)

- Identity relation on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x y \in \mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \ge n : x_m = y_m$.



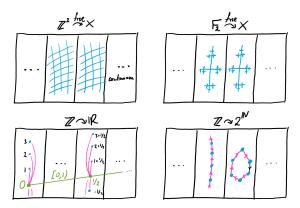
・ ロ ト ・ 一日 ト ・ 日 ト

3

A graphing of a CBER E on X is a Borel graph $G \subseteq X^2$ whose connectedness relation is E ($xEy \leftrightarrow xG \cdots Gy$ for all $x, y \in X$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A graphing of a CBER E on X is a Borel graph $G \subseteq X^2$ whose connectedness relation is E ($xEy \leftrightarrow xG \cdots Gy$ for all $x, y \in X$).

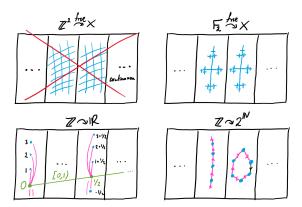


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Treeing of a CBER

Definition

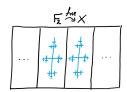
A treeing of a CBER E is an acyclic graphing, and a CBER E is said to be *treeable* if it admits a treeing.



Treeable CBERs

Example

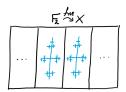
Free actions of a free group $F_r \curvearrowright X$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Example

Free actions of a free group $F_r \curvearrowright X$.

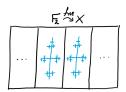


Theorem (JKL02)

Free actions of virtually-free groups are treeable.

Example

Free actions of a free group $F_r \curvearrowright X$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (JKL02)

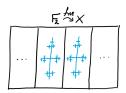
Free actions of virtually-free groups are treeable.

Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a quasi-tree is virtually-free, and hence treeable.

Example

Free actions of a free group $F_r \curvearrowright X$.



・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

Theorem (JKL02)

Free actions of virtually-free groups are treeable.

Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a quasi-tree is virtually-free, and hence treeable.

Question (Robin Tucker-Drob; 2015)

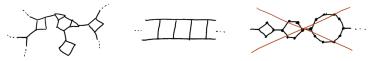
Is the class of treeable CBERs robust under quasi-isometries?

Theorem (Chen, Poulin, Tao, Tserunyan; 2023+) If a CBER E admits a locally-finite graphing such that each component is a quasi-tree, then E is treeable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Theorem (Chen, Poulin, Tao, Tserunyan; 2023+) If a CBER E admits a locally-finite graphing such that each component is a quasi-tree, then E is treeable.

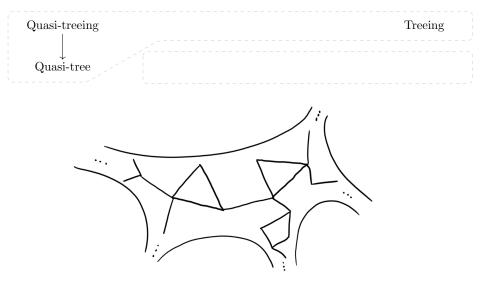
Two metric spaces X, Y are *quasi-isometric* if they are isometric up to a bounded multiplicative and additive error; X is a *quasi-tree* if it is quasi-isometric to a tree.

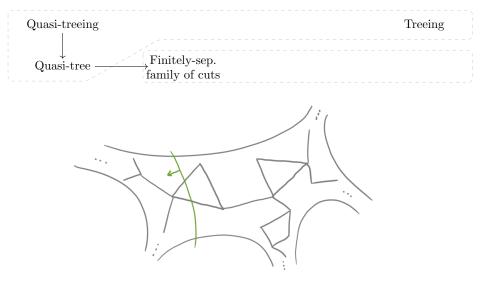


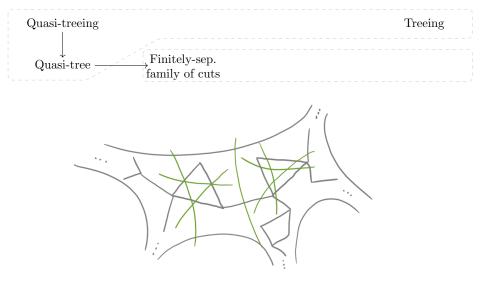
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

イロト イポト イヨト イヨト

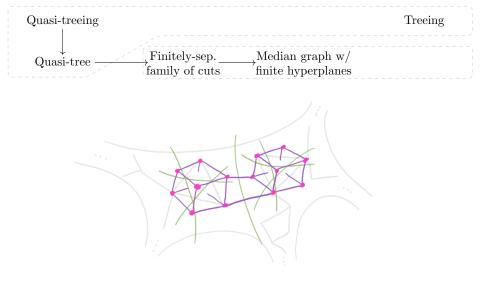
æ

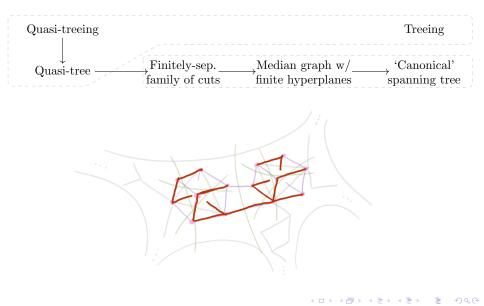


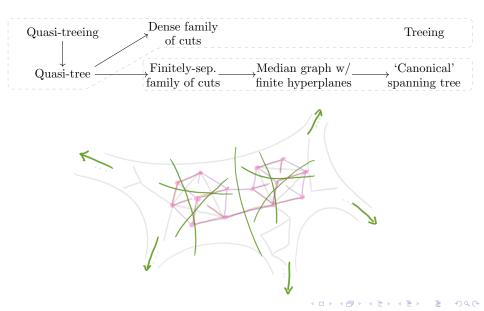


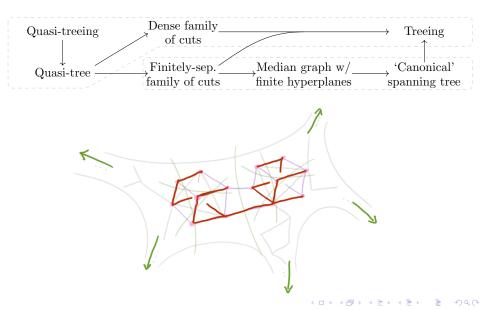


◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○





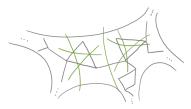




Finitely-separating cuts

Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset $H \subseteq X$ with finite boundary.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finitely-separating cuts

Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset $H \subseteq X$ with finite boundary.

Let \mathcal{H} be a family of cuts such that if $H \in \mathcal{H}$, then $\neg H \in \mathcal{H}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finitely-separating cuts

Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset $H \subseteq X$ with finite boundary.

Let \mathcal{H} be a family of cuts such that if $H \in \mathcal{H}$, then $\neg H \in \mathcal{H}$.

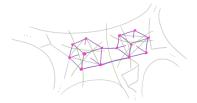
Definition

Such a family \mathcal{H} is *finitely-separating* if for each $x, y \in X$, there are finitely-many $H \in \mathcal{H}$ with $x \in H \not\ni y$.

An orientation on \mathcal{H} is an upward-closed subset $U \subseteq \mathcal{H}$ containing exactly one of $H, \neg H$ for every $H \in \mathcal{H}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

An orientation on \mathcal{H} is an upward-closed subset $U \subseteq \mathcal{H}$ containing exactly one of $H, \neg H$ for every $H \in \mathcal{H}$.



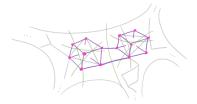
We'll only consider the orientations that are *based*, in the sense that each $H \in U$ contains a minimal $H_0 \in U$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The dual median graph

Definition

A median graph is a connected graph (X, G) such that for each $x, y, z \in X$, the intersection $[x, y] \cap [x, z] \cap [y, z]$ is a singleton, called the median of x, y, z, and is denoted by $\langle x, y, z \rangle$.



- 日本 - 4 日本 - 4 日本 - 日本

The dual median graph

Definition

A median graph is a connected graph (X, G) such that for each $x, y, z \in X$, the intersection $[x, y] \cap [x, z] \cap [y, z]$ is a singleton, called the median of x, y, z, and is denoted by $\langle x, y, z \rangle$.

Theorem (Sageev 95)

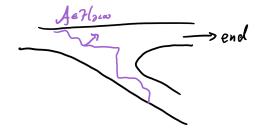
If \mathcal{H} is finitely-separating, then the graph $\mathcal{M}(\mathcal{H})$:

- Vertices are based orientations on \mathcal{H} ;
- Neighbors of U are $U \triangle \{H, \neg H\}$ for each minimal $H \in U \setminus \{\neg 0\}$;

うして ふゆ く は く は く む く し く

is a median graph.

The end compactification of a connected locally-finite (X, G) is the Stone space \hat{X} of the Boolean algebra $\mathcal{H}_{\partial < \infty}(X)$, whose non-principal ultrafilters are the ends of (X, G).



うして ふゆ く は く は く む く し く

The end compactification of a connected locally-finite (X, G) is the Stone space \hat{X} of the Boolean algebra $\mathcal{H}_{\partial < \infty}(X)$, whose non-principal ultrafilters are the ends of (X, G).

Definition

A family \mathcal{H} of cuts is *dense towards ends* of X if \mathcal{H} contains a neighborhood basis for every end in \widehat{X} .

うして ふゆ く は く は く む く し く

Density towards ends for quasi-trees

Lemma

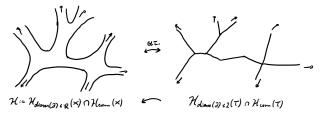
The connected locally-finite graphs in which $\mathcal{H}_{\operatorname{diam}(\partial) \leq R}$ is dense towards ends for some $R < \infty$ is invariant under quasi-isometry.

Corollary

If (X,G) is a locally-finite quasi-tree, then the family

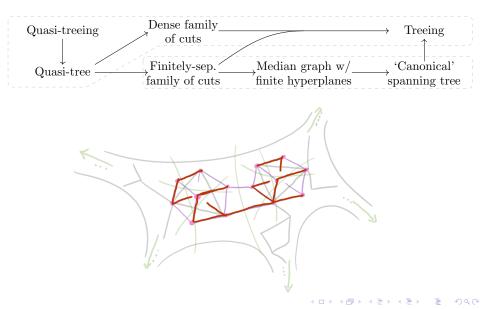
$$\mathcal{H} \coloneqq \mathcal{H}_{\operatorname{diam}(\partial) \leq R}(X) \cap \mathcal{H}_{\operatorname{conn}}(X)$$

of cuts is dense towards ends for some $R < \infty$.



イロト 不得 トイヨト イヨト

Wrapping things up...



Thank you!

